Grinis Research Intelligence & Technologies

At GrinisRIT we carry out research in Mathematics, Physics and Finance. We develop software for the scientific community and the financial industryWe offer consulting services and commercial support. 

NOA: Nonlinear Optimisation Algorithms

We aim to make it easier to integrate optimisation with on-line learning, bayesian computation and large simulation frameworks through dedicated differentiable algorithms. Our solution is suitable for both research and applications in performance demanding systems such as encountered in streaming analytics, game development and high frequency trading  [itCppCon21].

Geometric PDEs

Energy Identities for singular solutions to Geometric PDEs:

Computational Physics

High energy physics (HEP) beyond colliders challenges mathematical models and their implementation in a unique way. We have to take into account complex interactions with the media the experiment takes place in. We build a software suite  to perform Monte-Carlo simulations for particles passing through matter integrated with differentiable programming techniquess carrying out analysis and inference on that data with performance and modelling complexity suitable not only for further scientific work, but also meeting industry requirements:

We build a platform incorporating differentiable programming into ab initio molecular dynamics leading to a performant high-throughput computational screening system for new materials identification:

We develop high performance solvers for inverse problems arising in monitoring systems based on hydro-thermo-mechanical-chemical data, but also muography, seismic surveys, gravimetry or inSAR:

Computational Geometry for Mirror Symmetry:

Environmental Sciences

Various industrial processes in geological formations, such as carbon dioxide capture sequestration, underground energy storage, enhanced oil recovery, hydraulic fracturing, well disposal, etc. could present safety and environmental risks including groundwater contamination. This activity must be thoroughly monitored in order to avoid long-time pollution of freshwater aquifers in the subsurface:

Machine Learning for tackling Climate Change:

Quantitative Finance

We are building a derivative pricing library with a strong focus on the differentiable programming paradigm. We implement efficient algorithms for sensitivity analysis of various pricing models suitable for fast calibration in realtime trading environments, and benefiting from GPU acceleration for risk evaluation of large trading books. Yet our aim is to avoid as much as possible compromises on computational accuracy and underlying dynamics expressiveness needed in complex modelling set-ups.

We hope also that our approach will make it easier to integrate pricing components directly into algorithmic trading systems and machine learning pipelines, as well as portfolio and margin optimisation platforms.


Roland Grinis

Roland  studied  Maths at Oxford, Cambridge and Imperial. He worked in the financial industry as a quantitative developer building models for interest rates exotic derivatives and optimization algorithms for initial margins. His research interests lie in Geometry, PDEs, Computational Physics and Finance